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Abstract

Consider the revenue maximization problem of a risk-neutral seller with m heterogeneous
items for sale to a single additive buyer, whose values for the items are drawn from known
distributions. If the buyer is also risk-neutral, it is known that a simple and natural mechanism,
namely the better of selling separately or pricing only the grand bundle, gives a constant-
factor approximation to the optimal revenue. In this paper we study revenue maximization
without risk-neutral buyers. Specifically, we adopt cumulative prospect theory, a well established
generalization of expected utility theory.

Our starting observation is that such preferences give rise to a very rich space of mechanisms,
allowing the seller to extract arbitrary revenue. Specifically, a seller can construct extreme
lotteries that look attractive to a mildly optimistic buyer, but have arbitrarily negative true
expectation. Therefore, giving the seller absolute freedom over the design space results in
absurd conclusions; competing with the optimal mechanism is hopeless. Instead, in this paper
we study four broad classes of mechanisms, each characterized by a distinct use of randomness.
Our goal is twofold: to explore the power of randomness when the buyer is not risk-neutral,
and to design simple and attitude-agnostic mechanisms—mechanisms that do not depend on
details of the buyer’s risk attitude—which are good approximations of the optimal in-class
mechanism, tailored to a specific risk attitude. Our main result is that the same simple and
risk-agnostic mechanism (the better of selling separately or pricing only the grand bundle) is
a good approximation to the optimal non-agnostic mechanism within three of the mechanism
classes we study.

1 Introduction

Expected utility theory (EUT) has long reigned as the prevailing model of decision making under
uncertainty. However, a substantial body of evidence, including the famous Allais paradox [1], shows
that most people make choices that violate this theory. Cumulative prospect theory (CPT) (Tversky
and Kahneman [33]) is arguably the most prominent alternative. A key element of this theory is
a non-linear transformation of cumulative probabilities by a probability weighting function. This
transformation can model a person’s tendency towards optimism or pessimism.1 On the other hand,
as mechanism designers we use randomization as an important tool in optimizing our objective,
typically (and crucially) assuming that agents make choices according to the tenets of expected
utility theory. While we have vastly deepened our understanding of mechanism design under this
assumption, it is essential to study empirically validated models of human decision-making.

In this paper we study the revenue-maximization problem of a risk-neutral seller with m het-
erogeneous items for sale to a single, additive buyer with cumulative prospect theory preferences.

∗UC Berkeley
†UWMadison
‡Carnegie Mellon University
1As we discuss below, real-world attitudes are not merely “optimistic” or “pessimistic”, but such simplistic atti-

tudes are easily and naturally captured by this model.
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Our goal is to design simple mechanisms that are agnostic to the underlying probability weighting
function of the buyer, yet achieve a good approximation to the revenue of the optimal mecha-
nism tailored to this weighting function. To understand our results in context, we begin by briefly
reviewing cumulative prospect theory.

1.1 Prospect Theory Basics

In full generality, cumulative prospect theory (CPT) asserts that preferences are parameterized
by a reference point (or status quo) r, a value function U that maps (deterministic, i.e. certain)
outcomes into utils (or dollars), and two probability weighting functions, w+ and w−, for weighting
the cumulative probabilities of positive and negative outcomes (relative to r). Throughout the
paper, and like most works in mechanism design, we assume linear utility for money: U(x) = x.
That is, our agents have value 1 for $1 and value 1000 for $1000. What remains, then, are the
weighting functions w+ and w− and the reference point r. By taking r = 0 and the weighting
functions to be the identity function, one recovers expected utility theory; thus, CPT generalizes
expected utility theory.

To gain an understanding of this theory, consider first a simple event E which occurs with
probability 1

2 , and assume that r = 0. Suppose that E corresponds to an agent receiving value 10;
if E does not occur, the agent receives nothing. A risk-neutral agent would value this potential
income at 10 ·Pr[E] = 5. An optimistic agent, overestimating the possibility of receiving 10, might
value E at slightly more than 5, whereas a pessimistic agent might value it at slightly less. CPT uses
a weighting function w+ which modifies probabilities of positive (with respect to r) outcomes: the
agent values event E at 10 ·w+(Pr[E]). Then w+(x) > x corresponds to optimism, and w+(x) < x
corresponds to pessimism. CPT captures much more complex behavior than merely optimism
and pessimism. For example, in experiments (e.g. [33, 8]), subjects tend to overweight extreme
events: in a sense, people are optimistic about very good outcomes and pessimistic about very bad
outcomes. This sort of behavior can be readily captured by CPT, and as it turns out, it suggests
inverse-S-shaped weighting functions.

In general, the event of interest might correspond to a positive or negative outcome. For
example, E might correspond to the agent losing value 10. In that case, we expect the optimistic
agent to underweight the probability of E occurring. For this reason, CPT models probability
weighting for gains and losses with functions w+ and w−, respectively. Furthermore, when the
random variable is supported on multiple non-zero values, applying w+ (or w−) directly to the
probability of each event leads to violations of first-order stochastic dominance. For this reason,
Quiggin [28] proposed to weight the cumulative distribution function, rather than the probability
mass function; hence cumulative prospect theory.

Our interest here is highlighting the effects of nonlinear probability weighting. We will therefore
focus on a special case of cumulative prospect theory, namely rank dependent utility theory (RDUT).
This theory is rich enough to explain a number of known violations of expected utility theory, e.g.,
the Allais paradox [29], general enough to include expected utility theory as a special case, while
at the same time simple enough to be mathematically tractable. This theory is equivalent to the
following assumption.

Assumption 1. For all p ∈ [0, 1], w−(p) = 1− w+(1− p) (Quiggin [28]).

Assumption 1 allows us to rank all the outcomes from worst to best, independent of whether
they are gains or losses, and weight their probabilities with a single weighting function w(x).
Furthermore, it makes the reference point r irrelevant. Chawla et al. [11] have previously studied
the same model, giving a class of mechanisms which optimally sell a single item to a pessimistic
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buyer. However, they restrict themselves to convex weighting functions. Here we study general
weighting functions and multi-item auctions. We postpone more details about rank dependent
utility theory until Section 2, and refer the reader to Appendix A for what the expected utility of
a general CPT agent (that is, without Assumption 1) for even a simple lottery looks like.

1.2 Our Results

Our starting point is the observation that even very mild probability weighting gives rise to rich
seller behavior, which allows the seller to extract unbounded revenue. Specifically, we show that
under assumptions satisfied by most weighting functions in the literature, the seller can design a
bet that has arbitrarily negative (risk-neutral) expectation, but looks attractive to a RDUT buyer.
This bet can be easily turned into an auction for selling any number of items by giving the items
for free if and only if the buyer takes the bet. Similar behavior has been observed before this work
for more general models, e.g. by Azevedo and Gottlieb [2] and Ebert and Strack [15].

In light of these negative results for arbitrary buyer-seller interaction, we focus our attention
to specific classes of mechanisms, imposing various restrictions on the mechanism’s description and
implementation. These restrictions are not onerous: when offered to a risk-neutral buyer, two of the
classes are equivalent to the class of all mechanisms, and another is equivalent to all deterministic
mechanisms. Our restrictions thus serve to isolate particular uses of randomization and to illustrate
the various effects RDUT preferences have on mechanism design.

The first class we consider is that of deterministic price mechanisms, which we denote Cdp. Here,
the seller offers a menu of (possibly correlated) distributions over the items, each at a fixed price.
The buyer may pay the price for a distribution, after which she receives a draw from the distribution.
To bypass some technical barriers, we also consider a special case of this class, nested deterministic
price mechanisms, or Cndp, which impose certain constraints on the distributions over items in
a menu. These constraints are very mild (for example they are always satisfied by independent
distributions) and are without loss of generality for a risk-neutral buyer. Next, we consider the
class of deterministic allocation mechanisms, Cda, where the mechanism deterministically allocates a
bundle of items for a possibly randomized, non-negative payment. Cda is equivalent to deterministic
mechanisms for a risk neutral buyer. Finally, we consider a multi-item generalization of the single-
item class of mechanisms that is optimal for convex weighting functions (as shown by Chawla et al.
[11]). We call this class binary-lottery mechanisms and denote it by Cb.

Our main result is that, for classes Cndp, Cda and Cb, a single simple mechanism, agnostic to the
underlying weighting function, gives a good approximation on the revenue of the optimal in-class
mechanism tailored to w. That mechanism is the better of selling every item separately at a fixed
price (henceforth SRev) and selling the grand bundle as a single item at a fixed price (henceforth
BRev), which is a valid mechanism in all classes considered. Furthermore, this mechanism is
deterministic, which implies that its expected revenue is the same for all weighting functions w, and
only depends on the buyer’s value distribution D. Our proof is by relating the revenue of each class
of mechanisms to the revenue obtainable from a risk-neutral buyer via any mechanism, combined
with a result of Babaioff et al. [3], which shows that max{SRev,BRev} is a constant approximation
to this risk-neutral revenue. For Cdp our understanding is partial; we show that max{SRev,BRev}
approximates the optimal, risk non-agnostic Cdp auction within a doubly exponential in the number
of items factor. This, of course, implies a constant approximation for a constant number of items
(in fact, for two items we can show an approximation factor of 2 for just SRev), but we leave it
as an open problem whether a constant approximation is possible for the general case. All our
results can be extended to a unit-demand and additive up to a downward closed constraint buyer
by paying an extra factor of 4 and 31.1, respectively, using the results of Chawla and Miller [10].
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Intuitively, the difficulty with analyzing mechanisms for RDUT buyers (and especially optimal
mechanisms) is that, given a mechanism, we cannot generally argue about how much a buyer type
t values the menu item purchased by a type t′. This is especially the case for general deterministic
price mechanisms, where allocations over items could be arbitrarily correlated. This, in turn,
prevents us from using basic “simulation arguments”: starting from an auctionM, manipulate the
allocation rule and pricing rule to get a different auction M′. Such arguments are very useful in
getting meaningful upper bounds on the optimal revenue. For example, Hart and Nisan [22] upper
bound the optimal revenue from a product distribution, Rev(D × D′), by Rev(D) + VAL(D′)2
using such an argument, where they give a concrete auction for D by manipulating the allocation
and payment rule of the optimal auction for D×D′. Similar “marginal mechanism” arguments are
crucial in many works that give simple and approximately optimal mechanisms for additive buyers,
e.g. Babaioff et al. [3], Yao [37], Li and Yao [24]; for example, the so-called core-tail decomposition
technique depends on such arguments. On the other hand, the recently developed Lagrangian
duality based approach (Cai et al. [7], Fu et al. [20], Cai and Zhao [6], Devanur and Weinberg
[12], Eden et al. [16, 17], Liu and Psomas [25]) also seems to fail here. This technique has been
successful in getting benchmarks in a number of settings, by giving a solution to the dual of the
mathematical program that computes the optimal auction. To the best of our knowledge, all works
that use this technique start from a linear program. Here, the mathematical program for the
optimal, risk non-agnostic auction is not even convex. Even though in theory only weak duality is
necessary for this technique to work, we haven’t been successful in applying it to our problem.

Before we proceed, we mention here another reasonable approach to model robustness with
respect to risk. Find the mechanism M that maximizes (over all mechanisms) the seller’s revenue
in the worst case with respect to the weighting function w (similar to recent results of Carroll
[9], Gravin and Lu [21] for robustness with respect to correlation). In this scenario, we observe
(see Appendix B) that the optimal mechanism is the optimal deterministic mechanism, so we get
that max{SRev,BRev} is a good approximation to the optimal revenue by a trivial reduction to
the risk neutral-buyer setting. To see why this is the case, notice that w(x) could take the value
one for all x except x = 0. In this case the buyer is extremely optimistic; her utility for a random
variable X is equal to her utility for her favorite outcome. We argue that randomizing only hurts
the seller, since doing so decreases both the expected utility of the buyer, and the expected revenue
of the seller.

1.3 Related Work and Roadmap

Prospect theory was originally defined by Kahneman [23] but, though successful in explaining
experimentally observed behavior, it suffered from a number of weaknesses, namely violations of
first-order stochastic dominance between random variables. Several works (Weymark [35], Quiggin
[28], Yaari [36], Schmeidler [32]) proposed solutions to these issues, resulting in cumulative prospect
theory (Tversky and Kahneman [33]). Next to expected utility theory, cumulative prospect theory
is likely the best studied theory of decision-making under uncertainty. We refer the reader to the
book of Wakker [34] for a thorough exposition of the model. Also see Machina [26] for a survey of
non-EUT models.

Although widely studied in behavioral economics, prospect theory has received much less at-
tention in the game theory and mechanism design literature. Our work is most closely related to
that of Chawla et al. [11], who study optimal and robust mechanisms for a single buyer and a
single item. Their work, unlike ours, places much stronger assumptions on the weighting function:

2D and D′ here are distribution over m1 and m2 items, respectively. VAL(D′) =
∑

j∈[m2]
E[D′j ], i.e. the total

expected sum of values from items in D′.
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namely, they assume convexity (which in turn implies w(x) ≤ x). In this paper we consider general
weighting functions, but restrict the mechanism design space. Further afield, Easley and Ghosh
[14] study contract design in a crowdsourcing setting with a prospect-theoretic model of workers.
Fiat and Papadimitriou [18] demonstrate that equilibria may not exist in two-player games when
players have prospect-theoretic preferences. Dughmi and Peres [13] and Fu et al. [19] study mech-
anism design with risk-averse agents in a setting where risk-averse behavior is represented by a
concave utility function, while more recently, in a similar setting, Nikolova et al. [27] study optimal
mechanisms for risk-loving agents.

Our main result is that the better of selling separately and selling the grand bundle is a risk
robust approximation to the optimal revenue. The approximation ratio of this mechanism has been
studied extensively for risk-neutral buyers having a large class of valuations [3, 5, 31, 7, 10, 5]. Our
result relies on this work, but our techniques are very different.

Roadmap. Section 2 poses our model and some preliminaries. We discuss the limits of our model
in Section 3, and show that if the seller is allowed to use an arbitrary mechanism, then he can extract
arbitrarily large revenue. In Section 4 we formally define the mechanism classes considered in this
paper, which we proceed to analyze in Sections 5 (deterministic price mechanisms), 6 (deterministic
allocation mechanisms) and 7 (binary lottery mechanisms).

2 Preliminaries

A risk-neutral seller, whose aim is to maximize revenue, is auctioning off m items to a single
buyer with cumulative prospect theory preferences. The value of the buyer for item i is vi, and
is distributed according to a known distribution Di. We assume that the item distributions are
independent, and denote the joint distribution by D. We first go over the buyer’s preference model
in detail, and then formulate our mechanism design problem.

Weighted Expectation. In this paper we focus on a special case of cumulative prospect theory,
rank dependent utility theory. In rank dependent utility theory a weighting function w distorts
cumulative probabilities (Quiggin [28]). The weighting function w satisfies the following properties:
(1) w : [0, 1] → [0, 1], (2) w is non-decreasing, (3) w(0) = 0 and w(1) = 1. We use the notation I
to indicate the risk-neutral weighting function; that is I(x) = x. For a random variable Z over k
outcomes, where the i-th outcome occurs with probability pi and gives utility ui, and ui ≤ ui+1,
an agent with weighting function w has expected utility

Ew [Z] =

k−1∑
i=1

ui

w
 k∑
j=i

pj

− w
 k∑
j=i+1

pj

+ ukw(pk) = u1 +

k∑
i=2

(ui − ui−1) · w

 k∑
j=i

pj

 .

The intuitive interpretation (for the latter expression) is that the agent always gets utility u1.
Then, the event that the agent gets an additional utility of at least u2−u1 occurs with probability
1 − p1 =

∑k
j=2 pj (which is weighted by the function w). The agent gets an additional utility

of at least u3 − u2 with probability
∑k

j=3 pj , and so on. We note that this definition makes no
assumption about the sign of ui; that is, the uis can be positive (corresponding to gains) or negative
(corresponding to losses). We will also use the following, equivalent definition.
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Definition 1. (Weighted expectation, probability version). Let Z be a random variable
supported in (−∞,∞) with cumulative distribution function FZ . Then the weighted expectation of
Z with respect to the weighting function w is

Ew[Z] = −
∫ 0

−∞

[
1− w

(
1− FZ(z)

)]
dz +

∫ ∞
0

w
(
1− FZ(z)

)
dz. (1)

Before continuing our exposition, we illustrate the flexibility and power of the model through
some examples. The weighting function can be used also to pick out various statistics of interest,
as the next two examples illustrate.

Example 1. Suppose w is given by

w(x) =

{
0 x ∈ [0, 12)

1 x ∈ [12 , 1].

Then the w-weighted expectation of any random variable is equal to its median.

In general, of course, Example 1 could be modified to pick out any quantile; simply change 1
2

in the definition of w to some τ ∈ [0, 1]. As special cases, the maxmin choice rule, in which the
agent evaluates a distribution according to the worst-case outcome, corresponds to picking τ = 1,
and the maxmax choice rule corresponds to τ = 0.3

Example 2. Suppose w(x) is given by

w(x) =

{
θ x ∈ [0, 1)

1 x = 1,

for some θ ∈ (0, 1). Then the w-weighted expectation is equal to the weighted average of the highest
and lowest outcomes in the support. E.g., if Z is supported on [L,H], then Ew[Z] = (1− θ)L+ θH.

We note that Examples 1 and 2 are among the utility functions studied by Fiat and Papadim-
itriou [18]; they show that games need not possess any Nash equilibrium when the players seek to
maximize the corresponding weighted expectations.

Properties of weighted expectation. Weighted expectation in this model satisfies the follow-
ing properties; proofs can be found in Appendix C.

Lemma 1. For any weighting function w, any random variable Z and any c ∈ R,(1) Ew[c+ Z] =
c+ Ew[Z], and (2) Ew[cZ] = cEw[Z].

Despite Lemma 1, and unlike risk-neutral expectation, the weighted expectation is not a linear
operator on random variables, as the following example demonstrates.

Example 3. Let Z1 be distributed uniformly on {0, 1} and let Z2 be independently distributed
uniformly on {0, 2}. Let w(x) = x2. Then Ew[Z1] = 1 · w(12) = 1

4 . Similarly, Ew[Z2] = 1
2 , so that

Ew[Z1] +Ew[Z2] = 3
4 . On the other hand, because Z1 and Z2 are independent, the random variable

Z1 + Z2 is uniform on {0, 1, 2, 3}, with weighted expectation

Ew[Z1 + Z2] = 1 · (w(
3

4
)− w(

1

2
)) + 2 · (w(

1

2
)− w(

1

4
)) + 3 · w(

1

4
) =

7

8
.

3Rostek [30] studies in depth the preference model, termed “quantile maximization”, implied by such weighting
functions.
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Mechanism Design. Back to mechanism design, any mechanism can be described by the al-
location it makes and the payment it charges as a function of the buyer’s report. For a report
v = (v1, . . . , vm), we denote by X(v) the random variable for the allocation, giving a probability
to each possible allocation of the items in {0, 1}m. Similarly, P (v) is the random variable for the
payment when the report is v. X(v) and P (v) may be correlated. Importantly, common prac-
tices from mechanism design in the risk-neutral setting, like treating the allocation as a vector in
[0, 1]m or the payment as a real number (i.e. replacing the random variable of the payment with
its expectation), are with loss of generality in our setting.

We assume that the buyer has additive utility for the items and is quasilinear with respect to pay-
ments: if she receives a set of items S for a payment p, her total value for this outcome is

∑
i∈S vi−p.

The buyer’s weighted expected utility from the mechanism’s outcome is Ew[v ·X(v)− P (v)]; we
say that a mechanism is incentive compatible (IC) for a buyer with weighting function w if for all
possible values v, v′ of the buyer, it holds that Ew[v ·X(v)− P (v)] ≥ Ew[v ·X(v′)− P (v′)]. It is
without loss of generality to express an incentive compatible mechanism in the form of a menuM,
with each menu item corresponding to a particular (allocation, payment) pair of correlated random
variables (X,P ). Then, the allocation and payment of a buyer with value v and weighting function
w is given by the utility-maximizing menu item4 (Xw(v), Pw(v)) = arg max(X,P )∈M Ew[v ·X − P ].
The revenue of the mechanism is given by RevM(w,D) = E[P (v)], where the expectation is with
respect to the random valuation v (drawn from D), as well as the random outcome of the payment
random variable P (v). A mechanism is individually rational (IR) if the buyer has non-negative
expected utility when participating. Throughout the paper we focus on IC and IR mechanisms.

We slightly overload notation and let Rev(w,D) denote the optimal revenue achievable by an
incentive compatible mechanism from selling m items to a buyer with weighting function w and
values drawn from D. We will frequently drop w to indicate the risk-neutral optimal revenue,
i.e. we use Rev(D) to mean Rev(I,D) (recall that I is the risk-neutral weighting function,
I(x) = x), and DRev(D) for the optimal revenue from a deterministic mechanism. Note that
DRev(w,D) = DRev(w′,D), for all w,w′.

In this paper we show that the best of SRev(D) (or just SRev), the auction that sells each
item separately at its optimal posted price, and BRev(D) (or just BRev), the auction that sells
the grand bundle as a single item, is a risk-robust approximation for a prospect theoretic buyer.
For a risk-neutral buyer, the following result is known.

Theorem 1 ([3, 7]). For a single, risk-neutral, additive bidder and any independent item distribu-
tion D it holds that

Rev(I,D) ≤ 2BRev(D) + 4SRev(D) ≤ 6 max{SRev(D),BRev(D)}.

Quantifying Sensitivity to Risk. Ideally, we would like to give simple auctions that perform
well for all weighting functions w, with respect to the optimal auction tailored for w. Unfortunately,
as we see in the next section, for some of the mechanism classes we study such a goal is too
optimistic without any restrictions on w. For instance, the w(x) could take the value 1 for all
x except x = 0. Here, the buyer’s extreme optimism yields utility equal to that in her favorite
outcome. Therefore, slight randomization in the outcomes (say with probability ε > 0 the buyer
pays nothing, but otherwise pays a very high price) would result in the buyer always having non-
negative utility, making her an easy target for extracting arbitrary revenue. For some of our results
we will therefore impose a mild restriction on w in order to escape these extreme situations, and
otherwise make no assumptions (such as convexity or Lipschitzness).

4We assume that any ties are broken in favor of menu items with a higher expected price.
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Figure 1: Any (α, β)-limited weighting function lies between the two red lines. The upper line has
slope α and the lower has slope β.

Definition 2. A weighting function w is (α, β)-limited if it satisfies (1) w(x) ≤ α(x− 1) + 1, and
(2) w(x) ≥ βx.

Geometrically, an (α, β)-limited weighting function w lies below the line with slope α passing
through (1, 1), and above the line with slope β passing through the origin; see Figure 1. The
purpose of this definition is to control the slope of the weighting function as it approaches 0 and
1. Note that meaningful values for α and β lie in the range [0, 1]. As α and β approach 1, the
buyer becomes less sensitive to risk; the risk-neutral weighting function is the unique (1, 1)-limited
weighting function. For any α < α′ and any β, an (α, β)-limited weighting function is also (α′, β)-
limited. We stress that we don’t use this restriction in all our results, and when we do use it, we
need only one of the two sides of the bound, i.e. we ask for either (α, 0)- or (0, β)-limited weighting
functions.

3 Limits of the Model

In this section, we demonstrate how our model, absent any additional assumptions on the mech-
anism or the weighting function, can lead to absurd results. Such results were known before our
work. Azevedo and Gottlieb [2] show that under assumptions on the weighting functions a principal
can extract unbounded revenue from a CPT agent, simply by offering a bet on a single coin-flip.
Furthermore, Ebert and Strack [15] show that CPT behavior gives rise to time inconsistency, allow-
ing a seller to extract the buyer’s entire wealth over multiple rounds of interaction. We reproduce
similar results in our context for completeness and to illustrate the variety of behaviors possible in
this model. In later sections, we develop restrictions on the mechanism which preclude this sort of
unreasonable behavior. First, the following simple lemma is instructive.

Lemma 2. For every distribution D, constant R ∈ R≥0, and weighting function w such that there
exists x∗ < 1 with w(x∗) = 1, there exists a mechanism M such that RevM(w,D) = R.

Proof. Consider the following lottery, where (positive) Z represents a transfer to the agent.

Z =

{
0 with probability x∗

−R
1−x∗ with probability 1− x∗.

(2)

The agent’s utility is Ew[Z] = −R
1−x∗ (1 − w(x∗)) = 0, while the seller’s revenue is E[−Z] =

R
1−x∗ (1 − x∗) = R. This lottery can be transformed into a mechanism for selling any number
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of items, by giving everything for free to the buyer, requiring only that she participates in the
lottery.

Lemma 2 relies on the dubious assumption that the buyer would assign no weight at all to an
extremely negative—albeit potentially highly unlikely—outcome. However, even seemingly reason-
able weighting functions can be exploited, as our next result shows.

Lemma 3. For every distribution D, constant R ∈ R≥0, and weighting function w such that there
exists x∗ with 1 > w(x∗) > x∗, there exists a mechanism M such that RevM(w,D) = R.

Proof. Consider the following lottery, where (positive) Z represents a transfer to the agent.

Z =

{
a with probability x∗

−ρa with probability 1− x∗,
(3)

where a > 0. The expected value of an agent with weighting function w is Ew[Z] = aw(x∗) −
ρa (1− w(x∗)). Pick ρ = w(x∗)

1−w(x∗) ; then, for all a, Ew[Z] = 0. That is, the buyer has utility exactly
zero for this lottery.

On the other hand, the expected revenue of the seller, who pays a with probability x∗ and gets
paid ρa with probability 1− x∗, is equal to

E[−Z] = ρa(1− x∗)− ax∗ = a ·
(
w(x∗)(1− x∗)

1− w(x∗)
− x∗

)
= a · w(x∗)− x∗

1− w(x∗)
.

The lemma follows by setting a = R 1−w(x∗)
w(x∗)−x∗ ; similarly to Lemma 2, this lottery can be turned

into an auction by giving all the items for free to the agent after participating in the lottery.

We note that the conditions of Lemma 3 are satisfied for nearly all weighting functions implied
by experiments in the literature; we refer the reader to [33, 34] for concrete examples. Furthermore,
the issue exhibited by Lemma 3 persists even if one enforces ex-post individual rationality, so long
as the seller is allowed to utilize a multi-round protocol.

Lemma 4. For every distribution D, constant ε > 0 and weighting function w such that there exists
x∗ with 1 > w(x∗) > x∗ + ε

1+ε , there exists a multi-round, ex-post individually rational mechanism
M such that RevM(w,D) = E[D].

Proof. For simplicity we only prove the m = 1 item case; the general case is identical. Consider
again the random transfer defined in (3). Picking ρ = w(x∗)

1−w(x∗)−ε provides the buyer strictly positive

utility. The seller’s revenue is equal to E[−Z] = a · (w(x
∗)(1−x∗)

1−w(x∗) − ε(1 − x∗) − x∗), which is again

strictly positive for every a > 0. By picking a and x∗ appropriately the seller can thus make both
Ew[Z] and E[−Z] very small positive numbers. This suffices to extract full buyer welfare as follows.

The buyer and seller will interact over T rounds. In the first round, the buyer reports a bid b. In
rounds t > 1, the seller will offer lottery Z (and the buyer has the option to not participate), unless
the seller has already extracted an amount larger than the bid b. After T rounds have passed, the
item will be awarded to the buyer for free. Of course, since Ew[Z] > 0, the buyer always chooses to
participate in round t, and (in expectation) loses a little bit of money. By picking T large enough,
the buyer eventually goes bankrupt at some intermediate round, but since she eventually gets the
item this mechanism is in fact ex-post IR. Notice that this mechanism is also truthful! Precisely
because when the buyer is calculating (in the first round) her expected utility from reporting b she
thinks that she will “come out on top”, and therefore is indifferent between all bids b (and thus
reports her true value v).
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As the previous lemmas exhibit, practical mechanisms cannot hope to compete against the
theoretically optimal revenue maximizing mechanism in this model, and thus this theory does not
give accurate predictions for the simple mechanisms that we observe in practice. There are multiple
ways to proceed. A natural one is to put restrictions on the weighting functions considered. Indeed,
this is the approach taken by Chawla et al. [11] for the single item case, where the weighting function
is restricted to be convex (therefore the buyer is always risk-averse). Another is to put restrictions
on the mechanisms considered. In this paper we restrict our attention to specific mechanism classes;
for some of our results this does not suffice and some mild restrictions on w are necessary as well.

4 Mechanism Classes

We define four classes of mechanisms. Recall that RevM (w,D) denotes the seller’s expected
revenue from a mechanism M, given that the buyer has weighting function w and her values are
distributed according to D. We denote the expected revenue of the optimal mechanism in a class
C by Rev (w,D, C). That is, Rev (w,D, C) = maxM∈C RevM (w,D).

4.1 The class Cdp of deterministic price allocations.

First, we consider mechanisms which use randomness only in the allocation. That is, the seller
offers a menu of distributions over the items, each at a fixed price. The buyer may pay the price
for a distribution over the items, after which she receives a draw from the distribution. We call this
class deterministic price (DP) mechanisms, and denote it by Cdp. It will be convenient to think of a
mechanismM in this class as a menu, where the buyer selects her favorite menu item, of the form
(p,X), where p is the payment and X is a (possibly correlated) distribution over items. Observe
that this class remains completely general for risk-neutral buyers.

Unfortunately, general deterministic price mechanisms are technically difficult to work with.
The arbitrary correlation allowed between items (in the allocation) makes arguing about the buyer’s
expected utility problematic. Specifically, different buyer types order outcomes of X differently,
and therefore could have wildly different expected weighted utility for the same distribution X
(since arbitrary correlation allows us to assign arbitrary probabilities to outcomes); this property
can be used to tailor to each type v an allocation X(v) that is attractive only to this type. Our
understanding of general Cdp mechanisms is therefore partial. We show that max{SRev,BRev}
gives a doubly exponential (in the number of items) approximation to the optimal deterministic
price mechanism. This trivially implies a constant approximation for a constant number of items;
we leave it as an open problem whether a constant approximation can be achieved for an arbitrary
number of items.

To mitigate the problems caused by arbitrary correlation, we also consider a special case of
deterministic price mechanisms, which imposes a specific form of correlation on the distribution
over allocations: we ask that the allocations in the support of the allocation distribution form a
nested set. We term this class nested deterministic price (NDP) mechanisms and denote it by Cndp.
We say a random variable X supported in 2[m] is a monotone lottery if X is supported on a chain
of subsets S1, · · · , Sk, k ≤ m, such that Si ⊂ Si+1 for all i ∈ [k − 1]. We use ∆n(2[m]) to denote
the set of such correlated distributions over the set of m items. For a mechanism M ∈ Cndp the
allocation distributions for each menu item are restricted to be in ∆n(2[m]). Observe that nested
deterministic price mechanisms are again completely general for risk-neutral buyers. This is so
because the optimal mechanism for a risk-neutral buyer can be specified in terms of the marginal
probabilities of allocation for each item. For any marginal probabilities, we can find a monotone
lottery having the same marginal probabilities.
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Observation 1. For any distribution D, the class Cndp of nested deterministic price mechanisms
contains an optimal mechanism for a risk-neutral buyer. That is, Rev(I,D) = Rev(I,D, Cndp).

Our main result for nested deterministic price mechanisms is that the seller cannot exploit the
buyer’s risk attitude at all in this class: Rev(w,D, Cndp) is equal to Rev(I,D)! This trivially
implies that max{SRev,BRev} is a constant approximation to Rev(w,D, Cndp) by Theorem 1.

4.2 The class Cda of deterministic-allocation mechanisms.

In Section 3, we showed that the seller can use randomized payments, utilizing very large positive
transfers, to extract unbounded revenue from an optimistic buyer. But what power do randomized
payments have when the buyer’s willingness to participate is exogenous to the seller? Here, we
consider mechanisms which satisfy two conditions: first, they sell only (deterministic) bundles of
items, and second they cannot offer positive transfers, that is, monetary transfers from the seller
to the buyer. We refer to these as deterministic allocation (DA) mechanisms, and denote it by Cda.
Formally, every M ∈ Cda offers one lottery for each subset of items S ⊆ [m]. The lottery for a
subset S always allocates S but charges a random (non-negative) payment.

Observe that this class of mechanisms is not fully general for a risk-neutral buyer, but, since
allocations are deterministic, DA mechanisms are equivalent to fully deterministic mechanisms for
a risk-neutral buyer. We observe that a seller with knowledge of w can use a DA mechanism to
extract more revenue from a RDUT buyer than would be possible to extract from a risk-neutral
buyer via any mechanism, i.e. Rev(w,D, Cda) > Rev(I,D). In fact, the gap between the two is
unbounded. This is possible because an optimistic buyer is willing to gamble that she will not have
to make a payment. Our main positive result for DA mechanisms is that, if the weighting function is
(α, 0)-limited, DRev(I,D) is an α approximation to Rev(w,D, Cda); therefore max{SRev,BRev}
is a 6α approximation to Rev(w,D, Cda), for all distribution D. As a special case of this result,
we get that the seller can use randomized payments to extract extra revenue only from optimistic
buyers; if w(x) ≤ x for all x, i.e. α = 1, there is no loss in the approximation.

4.3 The class Cb of binary-lottery mechanisms.

Finally, we consider a generalization of the mechanism format studied by Chawla et al. [11]. They
showed that a menu of lotteries supported on only two outcomes—receive the item and pay, or pay
nothing and receive nothing—were sufficient to extract the optimal revenue if there is only a single
item for sale and the buyer has a convex weighting function. We consider an extension to multiple
items which offers, for each subset of items, a (potentially uncountable) menu of binary lotteries.
Let Cb denote the following class of auctions. Each M ∈ Cb contains binary lotteries for subsets
S ⊆ [m]. A lottery for a subset S is of the following format:

(XS , PS) =

{
(S, pS) with probability qS

(∅, 0) with probability 1− qS .

That is, either get the subset S and pay pS (with probability qS), or get nothing and pay nothing
(with probability 1−qS). Note that this does constitute a significant restriction of the design space.
However, this format is still quite flexible: considered as a direct-revelation mechanism, for each
type we specify a subset of the items, a probability of allocation, and a payment. Our main positive
result for binary-lottery mechanisms is that, if the weighting function is (0, β)-limited, Rev(I,D)
is a β approximation to Rev(w,D, Cb); combined with Theorem 1 this implies a 6β approximation
for max{SRev,BRev}.
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5 Deterministic Price Mechanisms

We first investigate general deterministic price mechanisms. We show that the optimal revenue of
a deterministic price mechanism on independent items for a RDUT buyer can be upper bounded
by doubly exponential times the optimal risk-neutral revenue of some items and the welfare on the
distribution of the remaining items.

Theorem 2. Let w be a weighting function, D1 be an independent distribution over m1 items, and
D2 be an independent distribution over m2 items. Let D = D1 ×D2 be an independent distribution
over m items, where m = m1 +m2. Then, for a single, additive bidder it holds that

Rev(w,D, Cdp) ≤ 22
m1 (m− 1

2
logm1)Rev(I,D1) + VAL (D2) .

Using standard techniques we get the following corollary.

Corollary 1. For a single, additive bidder and any independent item distribution D, it holds that
Rev(w,D, Cdp) ∈ O(2m2m) max{SRev,BRev}.

Proof. Let T1 and T2 be the random variables of the sum of value of items in D1 and D2 respectively.
We use the notation 1E for the indicator variable of an event E. Notice that RevM(w,D, Cdp) =
E[p(v1, v2) · 1T1≥T2 ] + E[p(v1, v2) · 1T1<T2 ]. Each of these terms can be upper bounded using Theo-
rem 2. For example, for the first term we have:

E[p(v1, v2) · 1T1≥T2 ] ≤ 22
m1 (m− 1

2
logm1)Rev(I,D1) + VAL (D2 · 1T1≥T2) ,

Notice that by posting a price of VAL (D2) = E[T2] for the grand bundle (of m1 items) in D1, we
can make revenue E[T2 · 1T1≥T2 ]. Therefore E[T2 · 1T1≥T2 ] ≤ BRev(D1). Thus

Ev1∼D1 [p(v1, v2) · 1T1≥T2 ] ≤ 22
m1 (m− 1

2
logm1)Rev(I,D1) + BRev(D1).

The symmetric bound holds for E[p(v1, v2) · 1T1<T2 ]. Adding the two inequalities and combining
with the upper bound on the optimal risk-neutral revenue (Theorem 1) we get the corollary.

Though this approximation is doubly exponential in the number of items, we do get a constant
approximation when the number of items is a constant. Notably, for the case of two items, we get
Rev(w,D, Cdp) ≤ 17SRev; an improved analysis can reduce this to a factor of 2. We leave it as an
open problem whether a constant approximation is possible for an arbitrary number of items.

Before we proceed with the proof of Theorem 2 we briefly comment on the technical obstacles
that lead to this approximation factor. As we’ve mentioned in the introduction, for a risk-neutral
buyer, statements similar to Theorem 2 are known, for example Rev(D1 × D2) ≤ Rev(D1) +
VAL(D2) ([3, 22]). The proof of this statement is roughly as follows. For every v2 ∈ D2 construct
an auction Mv2 for D1. When the buyer reports some v1 ∈ D1, Mv2 copies the allocation (for the
items in D1) and payment rule of the optimal auction, M, for D1 × D2, and then slightly adjusts
the payments to cover for the lost value (i.e. expected value from the items in D2 that should
not be paid in Mv2). The result of this adjustment is that the utility of reporting v1 in Mv2 is
equal to the utility of reporting (v1, v2) in M, and therefore Mv2 is incentive compatible. Then,
the optimal revenue for D1 is at least the revenue Mv2 , which is equal to Rev(D1 × D2) minus
the reimbursement (which is at most VAL(D2)). Unfortunately, such adjustments to the payment
do not work here. Replacing the (random) allocation of items in D2 with a deterministic payment
gives different weighted expected value to different types, since different types order outcomes
differently. For example, a buyer with type t = (v1, v2, v3) such that v3 > v1 + v2 prefers outcome
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{3} to outcome {1, 2}; the calculation of the weighted expected utility depends on the order over
outcomes, and therefore, because of the IC constraints between types with different orders, we can’t
naively replace random outcomes with deterministic payments (or, more accurately, deterministic
reimbursements).

Our approximation factor depends on the number of all possible valid orderings over outcomes.
By valid ordering we mean that there exist types who order outcomes of X in this ordering (for
example, an ordering where outcome {1} is preferred to {1, 2} is not valid) . A loose upper bound
on the number of valid orderings is (2m)!; in our proof we’re able to do much better. A couple of
new additional ideas are necessary in order to deal with the subtleties of our setting, but otherwise
our proof follows a similar structure to the one described above.

Proof of Theorem 2. LetM be the revenue optimal auction (in auction class Cdp) for a buyer with
weighting function w and value distribution D = D1 × D2; let X(v) and p(v) be the allocation
and payment rule of M. We use the notation 1E for the indicator variable of an event E. For
ease of notation we will write i ∈ [mj ] instead of “item i in the support of Dj”, and vi(j) for the
value an item j in the type vi ∈ Di5. We prove the theorem by giving an auction for selling m1

items to a risk-neutral buyer whose values are drawn from D1. Specifically, first sample v2 from
D2; we construct a deterministic-price mechanism Mv2 = (Xv2 , pv2) that is incentive compatible
for a risk-neutral buyer, and then lower bound its revenue.

We would like to relate the revenue Mv2 with the revenue of M. As we’ve already discussed
though, the natural choice of copying the allocation for items i ∈ [m1] from M and then adjusting
the payments does not work, because the resulting auction is not incentive compatible. In this
proof we will restrict our attention to a certain subset Rv2 of the support of D1, such that all types
in Rv2 order outcomes the same way. We then copy the decisions of M only in that region; when
v1 /∈ Rv2 the buyer is allocated her favorite menu item (from the ones designed for types in Rv2).

Use S1, . . . , S2m to denote the 2m distinct subsets of m items. A necessary condition for an
ordering over items to be valid is inclusion partial order: if Si ⊂ Sj , then Si is before Sj in the

order. Brightwell and Tetali [4] have shown that there are at most 22
m1 (m1− 1

2
logm1−log e) ways to

order the subsets of m1 items such that the orders satisfy the inclusion partial order property. For
each of those ordering, there are at most

(
2m−2m2

2m1

)
/(2m2 !) 6 different ways to combine an ordering

on subsets of m1 items and an ordering on subsets of m2 items (that satisfy the inclusion partial
order property) to obtain an ordering on the subsets of their union that satisfies the inclusion

partial order property. Thus, there are at most N = 22
m1 (m1− 1

2
logm1−log e) ·

(
2m

2m1

)
/(2m2 !) different

orderings of S1, . . . , S2m when v2 is fixed. Therefore we can partition the support of D1 into regions
R1, . . . , RN , such that in each region Ri, all types have the same preference ordering over subsets
of items.

Let Rv2 denote the region from whichM extracts the most revenue (weighted by the probability
of being in the region). Assume wlog that the order of subsets in this region is S1 ≤ S2 ≤ · · · ≤ S2m .
For every v1 ∈ Rv2 , we want the risk-neutral buyer’s utility of reporting v1 in Mv2 to be the same
as the RDUT buyer’s utility of reporting (v1, v2) in M. The latter term is equal to

uw((v1, v2),M) = −p(v1, v2) +
∑
i∈[m1]

aiv1(i) +
∑
j∈[m2]

bjv2(j) , (4)

for some non-negative constants a1, . . . , am1 and b1, . . . , bm2 . Specifically, think of X(v) as a vector

5vi ∈ Di is an mi dimensional vector.
6
(

2m

2m1

)
counts the number of complete orders with the order of all subsets of [m1] items fixed. Dividing by (2m2 !)

removes the orders in which the subsets of [m2] items are ordered incorrectly.
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in R2m
≥0 where the i-th entry, denoted by X(v)[Si], is the probability that the buyer gets exactly the

set Si. Then ai =
∑

k∈[2m],Sk3i

(
w(
∑2m

j≥kX(v1, v2)[Sj ])− w(
∑2m

j>kX(v1, v2)[Sj ])
)
.

Each term in the sum is nonnegative (since the weighting function is non-decreasing) and

the sum of ais telescopes, that is
∑

k∈[2m]

(
w(
∑2m

j≥kX(v1, v2)[Sj ])− w(
∑2m

j>kX(v1, v2)[Sj ])
)

= 1.

Therefore we can conclude that all coefficients ai are in [0, 1], and since they add up to 1, we can
think of them as probabilities. Similarly, for the bjs.

Since Mv2 is designed for a risk-neutral buyer, we can think of Xv2(v1) as a vector in Rm1
≥0 .

The i-th entry of Xv2(v1) is the marginal probability that the buyer gets item i ∈ [m1]. Now,

for every v1 ∈ Rv2 , we set the allocation to be Xv2(v1) =
[
a1 . . . am1

]T
, and the payment to

be pv2(v1) = p(v1, v2) −
∑

j∈[m2]
bjv2(j). It is immediate that the utility of a risk-neutral buyer

when reporting v1 ∈ Rv2 is exactly the RHS of (4). Since M is IC, we get that, in Mv2 , if the
(risk-neutral) buyer’s type is in Rv2 , then she has no incentive to report a different type in Rv2 .
Finally, for every v1 6∈ Rv2 , set (Xv2(v1), p

v2(v1)) to be the best menu item among the ones already
added toMv2 for types in Rv2 . Therefore,Mv2 is trivially IC for v1 /∈ Rv2 as well. Intuitively, seen
as a menu, our overall auction Mv2 copies (and adjusts) the menu of M for types (v1, v2) where
v1 ∈ Rv2 .

It remains to bound the revenue of Mv2 . The revenue of Mv2 is at least its revenue in Rv2 :

RevMv2 (I,D1) ≥ Ev1∼D1

[(
p(v1, v2)−

∑
j∈[m2]

bjv2(j)
)
· ·1v1∈Rv2

∣∣∣v2] .
Since the revenue of Mv2 cannot exceed the optimal revenue, we have

Ev1∼D1

[(
p(v1, v2)−

∑
j∈[m2]

bjv2(j)
)
· 1v1∈Rv2

∣∣∣v2] ≤ Rev(I,D1)

Ev1∼D1

[(
p(v1, v2)−

∑
j∈[m2]

bjv2(j)
)∣∣∣v2] ≤ N ·Rev(I,D1)

Ev1∼D1 [p(v1, v2)|v2] ≤ N ·Rev(I,D1) + E
[(∑

j∈[m2]
bjv2(j)

)
|v2
]

Ev1∼D1 [p(v1, v2)|v2] ≤ N ·Rev(I,D1) + VAL (D2|v2) .

Finally, sum this inequality across the support of D2 to get∑
v2∼D2

Pr[v2] · Ev1∼D1 [p(v1, v2)|v2] ≤
∑
v2∼D2

Pr[v2] · (N ·Rev(D1) + VAL (D2|v2))

E[p(v1, v2)] ≤ N ·Rev(I,D1) + VAL (D2) .

Observing that N = 22
m1 (m1− 1

2
logm1−log e) ·

(
2m

2m1

)
/(2m2 !) < 22

m1 (m− 1
2
logm1) concludes the proof.

5.1 Nested Deterministic Price Mechanisms

Our main result is that the class of nested deterministic price mechanisms does not offer the seller
any means of exploiting the buyer’s risk attitude: the optimal revenue within the class is equivalent
to the optimal revenue obtainable from a risk-neutral mechanism.

Theorem 3. Let w be an invertible weighting function and D be an independent distribution sup-
ported in Rm≥0. Then, for a single, additive bidder it holds that Rev(w,D, Cndp) = Rev(I,D).

Combining this result with Theorem 1 of Babaioff et al. [3] we get the following corollary.
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Corollary 2. Let w be any invertible weighting function and D be any independent distribution
supported in Rm≥0. Then, for a single, additive bidder it holds that

Rev(w,D, Cndp) ≤ 6 max{SRev(D),BRev(D)}.

We prove Theorem 3 in two lemmas. We start by showing that for any invertible weighting
function, there exists an NDP mechanism which recovers the optimal risk-neutral revenue.

Lemma 5. Let w be an invertible weighting function and D be any distribution supported in Rm≥0.
Then Rev(w,D, Cndp) ≥ Rev(I,D).

Proof. Given a mechanismM such that RevM(I,D) = Rev(I,D) (i.e. a revenue optimal mecha-
nism for a risk-neutral buyer), let X(v) and p(v) be the allocation and payment rule (respectively)
of M. Since this buyer is risk-neutral, p(v) ∈ R≥0 is some deterministic payment, and we will
assume that X(v), the random variable for the allocation, is a monotone lottery (which is with-
out loss of generality by Observation 1). We define a mechanism M̃ =

(
X̃(v), p̃(v)

)
such that

RevM̃(w,D) = RevM(I,D).
Fix v. Let S1, · · · , Sk be the support of X(v), where Si ⊂ Si+1 for i ∈ [k], and let 1 −

Fi = Pr[Si ⊆ X(v)]. Then a risk-neutral buyer’s utility when participating in M is u(v,M) =∑k
i=1

(
v(Si)− v(Si−1)

)
(1− Fi), where we take S0 = ∅. Let 1− F̃i = w−1(1− Fi), and define X̃(v)

such that Pr
[
X̃(v) = Si

]
= F̃i+1 − F̃i. Also, let p̃(v) = p(v). A risk-sensitive buyer with weighting

function w and any valuation v′ has weighted expected utility for the lottery (X̃(v), p̃(v)) equal to

uw(v′, X̃(v), p̃(v)) =
k∑
i=1

(
v′(Si)− v′(Si−1)

)
w(1− F̃i)− p̃(v)

=

k∑
i=1

(
v′(Si)− v′(Si−1)

)
(1− Fi)− p(v)

= u(v′, X(v), p(v))

The first equality follows because v′(S) is monotone in S and Si ⊆ Si+1. Because this equality
holds for every valuation v′,

(
X̃(v), p̃(v)

)
is an IC and IR mechanism for a buyer with weighting

function w, and furthermore obtains the same revenue from that buyer as M obtains from a
risk-neutral buyer.

Next, we show the converse: that we can construct a mechanism for a risk-neutral buyer which
obtains the same revenue as any DP mechanism for a buyer with weighting function w.

Lemma 6. Let w be any weighting function and D any distribution supported in Rm≥0. Then
Rev(w,D, Cndp) ≤ Rev(I,D).

Proof. Consider a mechanism M ∈ Cndp. Let X(v) and p(v) be the allocation and payment rule,
respectively, of M, where X(v) is a random variable in ∆n(2[m]) and p(v) ∈ R≥0. We construct a
mechanism M̃ =

(
X̃(v), p̃(v)

)
for a risk-neutral buyer such that RevM̃(I,D) = RevM(w,D).

Fix v. X(v) is a monotone lottery by definition of Cndp, so let S1, · · · , Sk be the support of X(v),
where Si ⊂ Si+1 for i ∈ [k], and let 1− Fi = Pr[Si ⊆ X(v)]. Then the utility of an RDUT buyer is
uw(v,X(v), p(v)) =

∑k
i=1 (v(Si)− v(Si−1))w(1−Fi), where we take S0 = ∅. Let 1−F̃i = w(1−Fi),
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and define X̃(v) such that Pr
[
X̃(v) = Si

]
= F̃i+1− F̃i. Lastly, let p̃(v) = p(v). A risk-neutral buyer

with any valuation v′ has expected utility for the lottery (X̃(v), p̃(v)) equal to

u(v′, X̃(v), p̃(v)) =
k∑
i=1

(
v′(Si)− v′(Si−1)

)
(1− F̃i)− p̃(v)

=
k∑
i=1

(
v′(Si)− v′(Si−1)

)
w(1− Fi)− p(v),

which is just uw(v′, X(v), p(v)). Because this equality holds for every valuation v′,
(
X̃(v), p̃(v)

)
is

an IC, IR mechanism for a buyer with weighting function w, and furthermore obtains the same
revenue from a buyer with weighting function w as M obtains from a risk-neutral buyer.

Observe that the assumption of monotone lotteries was critical to the proof of Lemma 6. If
X(v) were an arbitrary distribution over subsets S ∈ 2[m], a buyer with valuation v′ would order the
outcomes differently from v. This would make it impossible to define the unweighted probability of
allocation in the mechanism M̃ in a way that would be simultaneously consistent with the weighted
probability assigned to the outcome by all valuations v′.

Indeed a general deterministic-price mechanism (without the restriction to monotone lotteries)
could exploit this discrepancy to obtain more revenue than a risk-neutral mechanism. That is,
Lemma 6 does not hold for the class Cdp. We show such an example below.

Claim 1. There exist a distribution D over two items, and a weighting function w, such that
Rev(w,D, Cdp) > Rev(I,D).

Proof. Let D1,D2 be independent and identical uniform distributions on {1, 3}. The revenue opti-
mal auction that sells the two items to a risk-neutral buyer is the deterministic auction that sells
the bundle of two items at the price 4. So Rev(I,D1 × D2) = 4 × 3

4 = 3. Consider the weighting
function

w(p) =


0, p ≤ 1

2

4p− 2, 1
2 < p < 3

4

1, 3
4 ≤ p

.

Consider the auctionM selling the two items in the following way: if the buyer reports type (1, 1)
she gets the first item with probability 1

2 and independently, gets the second item with probability
1
2 , and the buyer pays 1 to the seller. Otherwise, the buyer gets both items and pays 4. It is
easy to see that M is incentive compatible for a buyer with weighting function w. Furthermore,
RevM(w,D1 ×D2) = 1× 1

4 + 4× 3
4 = 13

4 > 3.

6 Deterministic Allocation Mechanisms

We now turn to deterministic allocation mechanisms which randomize the payment, but which are
restricted to offer only deterministic bundles and charge only positive payments ex post. Unlike
the examples of Section 3, these mechanisms cannot offer a positive transfer in order to induce the
buyer to pay more. Instead, the value of the items received must induce the buyer to pay. How
much revenue can the seller then obtain?

As the next example shows, with randomized payments the seller can obtain strictly more
revenue from an RDUT buyer than from a risk-neutral buyer, even with one item and a mechanism
that always allocates the item.
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Example 4. Let w(x) = x1/a for a ≥ 1; note that a buyer with such a weighting function is strictly
optimistic. Suppose there is one item available, and D = U [0, 1]. Consider the mechanism that
offers the item for a randomized payment P which is p w.p. 1− q and 0 otherwise. For any value
v for the item, the utility of the buyer is v − p(1− w(q)). In other words, the buyer purchases the
item if v ≥ p(1− w(q)). The total expected revenue is thus

p(1− q) (1− F (p(1− w(q)))) = p(1− q) (1− p(1− w(q))) . (5)

Fix q; we will solve for the optimal p. By the first derivative test, we find that the optimal price
is pq = 1

2(1−w(q)) . Substituting this into (5), we have

Rev(q) =
1− q

4
(
1− w(q)

) =
1− q

4
(
1− q1/a

) .
By L’Hôpital’s rule, limq→1Rev(q) = a

4 . Observing that Rev(D) = maxx x ·Pr[v ≥ x] = 1
4 , we

see that the revenue approaches a ·Rev(D).

The main result of this section shows that Example 4 gives the largest possible gap between
the revenue of a DA mechanism and the revenue obtainable via any deterministic mechanism from
a risk-neutral buyer. Note that x1/a is an ( 1a , 1)-limited weighting function. We show that no
deterministic-allocation mechanism can increase the seller’s revenue by a factor more than α−1

over the risk-neutral optimum for any (α, 0)-limited weighting function. As a special case of this
result, we get that the seller can use randomized payments only to extract extra revenue from
optimistic buyers; for pessimistic buyers, the revenue extractable via DA mechanisms is equal to
the revenue obtainable via fully deterministic mechanisms.

Theorem 4. For a single, additive bidder, any (α, 0)-limited weighting function w and any inde-
pendent distribution D it holds that

Rev(w,D, Cda) ≤ α−1DRev(D).

Combining Theorems 4 and 1 we get the following corollary.

Corollary 3. For a single, additive bidder, any (α, 0)-limited weighting function w and any inde-
pendent distribution D, it holds that Rev(w,D, Cda) ≤ 6α−1 max{SRev,BRev}.

Before proving Theorem 4, we show that it is without loss of generality to assume that the
payment variables in a DA mechanism have a very simple form. Namely, we show that it suffices
to consider Bernoulli-distributed payments: with probability q the payment is some positive p, and
otherwise the payment is zero.

Lemma 7. Fix a distribution D and a continuous, (α, 0)-limited weighting function w with α > 0.
For every deterministic-allocation mechanismM with payments PS with discrete support in [0,∞),
there exists a deterministic-allocation mechanism M′ with binary payments P ′S such that

RevM(w,D) ≤ RevM′(w,D).

Furthermore, when w(x) ≤ x for all x, P ′S is a deterministic price.

Proof. For this proof, it will be convenient to work with the dual of the weighting function w†(x) =
1− w(1− x). The proof of the following claim can be found in Appendix C.
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Claim 2. Ew[−X] = −Ew† [X]

Fix a set S with associated payment PS inM. M′ has the same allocation asM, but different
payments P ′S , such that

Ew† [PS ] = Ew†
[
P ′S
]

and (6)

E[PS ] ≤ E
[
P ′S
]
, (7)

that is, the expected payment to the seller (aka the revenue) is non-decreasing, while the
(weighted) expectation of the buyer’s payment is the same. To see why these equations imply the
result, notice that for every set S and type v the utility of a buyer satisfies

uw(v, S, PS) = Ew[v(S)− PS ] = v(S)− Ew† [PS ] = v(S)− Ew†
[
P ′S
]

= u(v, S, P ′S),

where the second equality follows from Lemma 1 (since the allocation is deterministic) and Claim 2,
and the third equality follows from Equation (6). Therefore the utility of each menu item is the
same, and thus for every type v the buyer will make the same selection in M′ as in M.

Now we show that we can find prices P ′S satisfying (6) and (7). For ease of notation, we consider
a single set S and omit the subscripts. Let P be supported on {p1, · · · , pk}, where Pr[P = pi] = qi
for all i ∈ [k]. For some p ∈ R≥0 and q ∈ [0, 1] to be specified, let P ′ = p w.p. q and 0 w.p. 1− q.
Let FP be the CDF of P . Then the conditions become

pw†(q) =

∫ ∞
0

w†
(
1− FP (z)

)
dz and pq ≥

∫ ∞
0

(
1− FP (z)

)
dz.

Let q = maxi∈[k]
qi

w†(qi)
. Observe that if w(x) ≤ x for all x, we can take q = 1. Set p =

1
w†(q)

∫∞
0 w†

(
1 − FP (z)

)
dz so that Equation (6) is satisfied by definition. By our choice of q, we

have 1− FP (z) ≤ q
w†(q)

w†
(
1− FP (z)

)
for all z ∈ [0,∞), and so∫ ∞

0

(
1− FP (z)

)
dz ≤ q

w†(q)

∫ ∞
0

w†
(
1− FP (z)

)
dz = pq.

Now we are ready to prove the main result.

Proof of Theorem 4. Let M be any deterministic-allocation mechanism. We define a determin-
istic mechanism MI and show that RevM(w,D) ≤ α−1RevMI (I,D). Thus, Rev(w,D, Cda) ≤
α−1DRev(I,D) = α−1DRev(D).

For every S ⊆ [m], let PS be the corresponding payment variable in M. By Lemma 7, we can
assume PS is equal to pS with probability qS and 0 otherwise. In MI , we add a corresponding
menu item which allocates S with probability 1 and always charges payment p′S = pS(1−w(1−qS)).
Every type v has utility v(S)− p′S for the menu item in MI that corresponds to S, which is equal
to Ew[v(S)− PS ], the expected utility of type v for the menu item in M for the same set. Thus, a
risk-neutral buyer will purchase in MI the menu item corresponding to what a buyer with weight
function w will purchase in M.

It remains to show that p′S is not too much smaller than E[P ] = pSqS . By definition of (α, 0)-
limited, w(1− qS) ≤ α(1− qS) + 1− α. Therefore, p′S = pS(1− w(1− qS)) ≥ αqSpS .
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7 Binary Lottery Mechanisms

In this section we study binary lottery mechanisms, the class Cb, as defined in Section 4. Recall
that mechanisms in this class are defined such that each menu item is a lottery which allocates
some S ⊆ [m] with probability qS , and charges a payment pS if and only if S is allocated. This
class generalizes the binary lottery mechanisms defined by Chawla et al. [11] for the single item
case. Chawla et al. [11] showed that, as long as the buyer is sufficiently pessimistic, the seller can
extract nearly the entire expected value of the buyer as revenue, regardless of the buyer’s value
distribution.

Lemma 8. [Chawla et al. [11]] For every ε > 0 and H > 1, if the buyer’s weighting function w is
invertible and satisfies w(1− ε) ≤ 2−H/ε, there exists a mechanism that for any value distribution
D supported on [1, H] obtains revenue at least 1−O(ε) times the buyer’s expected value E[D].

Observe that under the same conditions we can extract the buyer’s full welfare by running
the mechanism of Lemma 8 for the grand bundle (which is a valid mechanism for the class Cb).
However, as we show next, the revenue is bounded for limited weighting functions.

Theorem 5. For a single, additive bidder, any (0, β)-limited weighting function w and any inde-
pendent distribution D, it holds that

Rev (w,D, Cb) ≤ β−1Rev(D).

Proof. Let M∈ Cb be an optimal mechanism for the class Cb. We construct a mechanism M̃ for a
risk-neutral buyer in the following way. Fix v. Let X(v) and P (v) be the allocation and payment
that a buyer with type v receives in M. Since this is a binary lottery, let X(v) be supported on
Sv ⊆ [m], let pv ∈ R≥0 be the payment, and let qv be the probability of allocation. Then the
weighted expected utility for this lottery of a buyer with weighting function w and any value v′ is
uw(v′, X(v), P (v)) = (v′(Sv)− pv)w(qv). Now, define the lottery (X̃(v), P̃ (v)) as

(X̃(v), P̃ (v)) =

{
(Sv, pv) w.p. w(qv)

(∅, 0) o.w.

Then the utility of a risk-neutral buyer with value v′ for the lottery X̃(v), P̃ (v) is also (v′(Sv) −
pv)w(qv), so that M̃ is IC and IR for a risk-neutral buyer. The respective revenues are

RevM(w,D) =

∫
V
fD(v)pvqv dv and RevM̃(I,D) =

∫
V
fD(v)pvw(qv) dv,

and so, using the definition of (0, β)-limited,

RevM̃(I,D)

RevM(w,D)
≥ inf

w(q)

q
≥ β.

Rearranging, we have RevM(w,D) ≤ β−1RevM̃(I,D) ≤ β−1Rev(I,D).

Again, combining with Theorem 1 we get the following corollary.

Corollary 4. For a single, additive bidder, any (0, β)-limited weighting function w and any inde-
pendent distribution D, it holds that

Rev (w,D, Cb) ≤ 6β−1 max{SRev,BRev}.
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A Full CPT example

Example 5 (Tversky and Kahneman [33]). Consider the following game of chance. You roll a die
once and observe the result v = 1, . . . , 6. If v is even, you receive v; if v is odd, you pay v. This
defines a random variable X which takes values (−5,−3,−1, 2, 4, 6), each with probability 1/6. Let
X+ be the random variable which takes value 0 with probability 1/2, and 2, 4, 6, each with probability
1/6. Also, let X− be the random variable which takes the value 0 with probability 1/2, and values
−1,−3,−5, each with probability 1/6, correlated such that X+ + X− = X. Assuming that r = 0,
the weighted expectation of X+ is

Ew+

[
X+
]

= 2 · (w+(1/2)− w+(1/3)) + 4 · (w+(1/3)− w+(1/6)) + 6 · (w+(1/6)− w+(0)).

The intuition here is that the multiplier of value v is equal to the difference between the weighted
probabilities of the events “the outcome of the experiment is at least as good as v” and “the outcome
is strictly better than v”. Similarly, the weighted expectation of X− is

Ew−
[
X−
]

= (−1) · (w−(1/2)−w−(1/3)) + (−3) · (w−(1/3)−w−(1/6)) + (−5) · (w−(1/6)−w−(0)),

where this time the multiplier of v is equal to the difference between the weighted probabilities of the
events “the outcome is at least as bad as v” and “the outcome is strictly worse than v”. Finally,
the weighted expectation of X is simply Ew[X] = Ew+ [X+] + Ew− [X−].

B Optimal Max-Min Mechanism

Theorem 6.
max
M

min
w

RevM(w,D) = DRev(D)

Proof. Define wo, the weighting function of a perfectly optimistic buyer, as the following

wo(q) =

{
0 q = 0

1 0 < q ≤ 1
.

We first prove the following lemma.

Lemma 9. For every value distribution D, if the buyer’s weighting function is wo, then there exists
a deterministic mechanism that maximizes the seller’s revenue.

Proof. Consider an arbitrary mechanism M and a buyer with type v = (v1, . . . , vm). Let L be a
menu item inM. L defines a distribution over k outcomes: outcome oi occurs with some probability
qi, where some subset of items Si is allocated for some payment pi. Without loss of generality we
assume that outcomes are ordered in increasing utility for the buyer. Then the expected utility of
the buyer with type v picking L is

Ewo [v,L] =
k−1∑
i=1

∑
j∈Si

vj − pj

wo
 k∑
j=i

qj

− wo
 k∑
j=i+1

qj

+

∑
j∈Sk

vj − pk

wo(qk)

=
∑
j∈Sk

vj − pk,

i.e. the expect utility is the same as the highest utility of all the outcomes in L.
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Let SL,v and pL,v be the subset of items and price in the favorite outcome of type v in the menu
item L inM. Now we construct a deterministic mechanismM′: for each type v and menu item L
in M, add to M′ the menu item L′L,v that deterministically sells SL,v at a price pL,v.

It’s not hard to see that a buyer with type v and weighting function wo will buy menu item
L′L,v in M′ if she buys L in M. Therefore RevM(wo,D) = RevM′(wo,D).

Let Mdet be the mechanism of Lemma 9. Subsequently, we get that

max
M

min
w

RevM(w,D) ≤ max
M

RevM(wo,D)

= RevMdet
(wo,D)

≤ max
M deterministic

RevM(wo,D)

= max
M deterministic

RevM(I,D)

= DRev(D)

The fourth equality holds since a prospect theory buyer has the same preferences as a risk-neutral
buyer in a deterministic mechanism. On the other hand:

DRev(D) = max
M deterministic

RevM(I,D) = max
M deterministic

min
w

RevM(w,D) ≤ max
M

min
w

RevM(w,D),

where the second equality holds since a prospect theory buyer has the same preferences as a risk-
neutral buyer in a deterministic mechanism. The theorem follows.

C Properties of Weighted Expectations

Proof of Lemma 1. We prove the statements for a discrete random variable Z over k outcomes;
the proof for continuous random variables is analogous. The i-th outcome in Z, Zi, occurs with
probability pi, and without loss of generality Zi ≤ Zi+1. Notice that for the random variable
W = Z + c, the ordering remains the same.

Ew[Z + c] =
k−1∑
i=1

(Zi + c) ·

w
 k∑
j=i

pj

− w
 k∑
j=i+1

pj

+ (Zk + c)w(pk)

=

k−1∑
i=1

Zi ·

w
 k∑
j=i

pj

− w
 k∑
j=i+1

pj

+ Zkw(pk)

+

k−1∑
i=1

c ·

w
 k∑
j=i

pj

− w
 k∑
j=i+1

pj

+ cw(pk)

= Ew[Z] + c ·

k−1∑
i=1

w

 k∑
j=i

pj

− w
 k∑
j=i+1

pj

+ w(pk)


= Ew[Z] + c · w

 k∑
j=1

pj


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= Ew[Z] + c.

Similarly,

Ew[cZ] =
k−1∑
i=1

(cZi) ·

w
 k∑
j=i

pj

− w
 k∑
j=i+1

pj

+ (cZk)w(pk)

= c ·

k−1∑
i=1

Zi ·

w
 k∑
j=i

pj

− w
 k∑
j=i+1

pj

+ Zkw(pk)


= c · Ew[Z] .

Proof of Claim 2.

Ew[−X] = −
∫ 0

−∞

(
1− w(1− F−X(z))

)
dz +

∫ ∞
0

w(1− F−X(z))dz

= −
∫ ∞
0

(
1− w(FX(z))

)
dz +

∫ 0

−∞
w(FX(z))dz

= −Ew† [X]
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